Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques

نویسنده

  • X Q Li
چکیده

Tool wear monitoring is crucial for an automated machining system to maintain consistent quality of machined parts and prevent damage to the parts during the machining operation. A vision-based approach is presented for tool wear identification in finish turning using an adaptive resonance theory (ART2) neural network embedded with fuzzy classifiers. The proposed approach is established upon the fact that the optical scattering image of a turned surface is related to the wear of the cutting tool. By applying the technique of the ART2 neural network embedded with fuzzy classifiers, the state of wear of the turning tool is determined from captured images obtained by laser scattering from the machined surfaces of the workpiece. This approach is not unlike the visual inspection of the surface of a machined workpiece to determine the state of wear of a cutting tool by an expert machinist. However, experimental results indicate that the conventional technique of measuring surface finish does not give values that correlate well with tool wear. On the other hand, the laser scattering image provides a good indication of the tool wear as it is not readily affected by buildup edge or cold-welded material, scratches and other disruptive defects on the turned surface as the tool wears. In this paper, the theory on the laser scattering image and the principle of tool wear identification are described. Based on the scattering images, the proposed approach can correctly identify the condition of ‘significant wear’ prior to the rapid tool wear stage for the cutting tool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System

Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...

متن کامل

Optimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System

Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

Fusion of Biogeography based optimization and Artificial bee colony for identification of Natural Terrain Features

Swarm Intelligence techniques expedite the configuration and collimation of the remarkable ability of group members to reason and learn in an environment of contingency and corrigendum from their peers by sharing information. This paper introduces a novel approach of fusion of two intelligent techniques generally to augment the performance of a single intelligent technique by means of informati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999